
Honours Individual Project Dissertation

DEEP LEARNING FOR ANALYSING

IMMUNE CELL INTERACTIONS

Leonore Papaloizos
April 4, 2020

i

Abstract

The protective responses of our immune system are initiated by interactions between immune
cells. These interactions can be inhibited or enhanced by the application of drugs. This project
investigated using deep learning models to analyse microscope images of immune cells to study
their interactions under different experimental conditions. Deep learning has scarcely been applied
in the field of immunology. We implemented and evaluated a convolutional autoencoder and an
autoencoder-based regression model to qualitatively and quantitatively analyse the interaction
between T cells and dendritic cells in microscope images. We found that the autoencoder helped
speed up the process of data visualisation and that the regression model successfully predicted
measures of interaction in unseen images of immune cells. With carefully selected and pre-
processed datasets, deep learning can be a useful technique for immunology researchers to analyse
immune cell interaction.

i

Education Use Consent

I hereby grant my permission for this project to be stored, distributed and shown to other
University of Glasgow students and staff for educational purposes. Please note that you are
under no obligation to sign this declaration, but doing so would help future students.

Signature: Leonore Papaloizos Date: April 4, 2020

i

Acknowledgements

I would like to thank Dr Carol Webster and Dr Hannah Scales for their continuous guidance
and advice throughout this project. Thank you to all the friends and family that supported and
encouraged me in the past four years.

i

Contents

1 Introduction 1
1.1 Motivation 1
1.2 General problem and our idea 1

2 Background 2
2.1 Immunology concepts 2

2.1.1 Our immune system 2
2.1.2 Implications 3

2.2 Concepts of interest in deep learning 3
2.2.1 Convolutional operations for image feature extraction 3
2.2.2 Autoencoders for dimensionality reduction 4
2.2.3 Deep regression models 4

2.3 Finding structure in high-dimensional data 5
2.4 The place of deep learning in immunology 6
2.5 Summary 7

3 Materials and Methods 8
3.1 Immune cells dataset 8

3.1.1 Setup 8
3.1.2 Experimental conditions 9
3.1.3 Image selection 9
3.1.4 Pre-processing 10
3.1.5 Combining images to qualify interaction 12

3.2 Image segmentation 13
3.2.1 Background correction 13
3.2.2 Quantifying interaction 13

3.3 Deep learning models 14
3.3.1 Autoencoder for visualising high dimensional data 14
3.3.2 Regression model for quantifying interaction in unseen images 15

4 Implementation 16
4.1 System diagram 16
4.2 Pre-processing 16
4.3 Image segmentation 17

4.3.1 k-means colour clustering 18
4.3.2 Thresholding 18
4.3.3 U-Net 20

4.4 Autoencoder and regression models 21
4.4.1 Experimental setup 21
4.4.2 Convolutional autoencoder 21
4.4.3 Deep regression 25

5 Evaluation 27
5.1 Methodology 27
5.2 Autoencoder 28

ii

5.2.1 How well can we reconstruct an image? 28
5.2.2 Can we find an underlying structure in the images of immune cells? 29
5.2.3 Are images within the same cluster structurally the same? 32
5.2.4 Are our visualisations more meaningful with interaction measure meta-data? 34

5.3 Regression 34
5.3.1 Metrics 34
5.3.2 Can we quantify interaction from an image of immune cells? 35

5.4 Discussion 39

6 Conclusion 40
6.1 Future work 40

Appendices 41

A Appendices 41
A.1 Autoencoder model initialisation 41
A.2 Regression model initialisation 41

Bibliography 43

1

1 Introduction

1.1 Motivation

Your immune system is your protective shield against pathogens. It functions by discriminating
between what is part of your self, and what is not, and fighting what is alien to it.

Now picture your immune system as a speed date. Your immune cells go on quick dates with
other immune cells, who tell them about their life. Immune cells might be under the influence
of certain substances to various degrees. The success of the discussion between two immune
cells during their speed date determines how your immune system is going to evolve as a whole.
The consumption of substances might help make the situation more positive, or worse. Your
immune system might be pleased with the date, and react positively, or an immune cell might
get offended by its date, and trigger a negative response.

Indeed, the onset of an immune response in our immune system depends on the interaction
strength between different types of immune cells. Certain types of immune cells relay information
about their environment to other types of immune cells, which can then trigger an appropriate
response depending on what they have learned from the other cell about the environment. The
environment might contain substances like alien, dangerous bodies. These interactions between
immune cells can be enhanced or inhibited by the application of drugs. Studying the reactions of
immune cells under the influence of different types of drugs is key to the development of drugs
for diseases such as viral infections, cancer or auto-immune diseases.

1.2 General problem and our idea

One way of studying the interactions of immune cells is through microscope images obtained in
artificial settings. We can place immune cells in a dish and study them under a microscope under
different experimental conditions, which could involve different types of drugs being injected
into the dish. Microscope images of these cells can then be systematically captured.

We are however not directly interested in how these images are captured, but how they can be
analysed. Microscope images are often analysed with proprietary software which is costly to
maintain and whose inner workings are hard to understand or customise. On the other hand,
applying deep learning techniques to biomedical data is becoming increasingly popular and more
accessible, while delivering promising results. In the specific case of image analysis of immune
cells, we want to explore how deep learning could be used to systematically extract metrics of
immune cell interactions from microscope images. Specifically, the aim is to assess whether using
deep learning in the field of immunology can provide useful information on interaction levels
between immune cells under different experimental conditions.

2

2 Background

2.1 Immunology concepts

2.1.1 Our immune system

Our immune system consists of organs, cells and groups of cells working in collaboration to
defend us from other organisms that could pose a danger to our health. Such outside forces
could be harmful viruses, bacteria or parasites for example. The human body is a haven for these
to thrive in, to our detriment. Our immune system comes into contact with many materials,
which might be harmless (e.g. food, pollen, our own body) or harmful (e.g. a virus, a parasite).
These materials are called antigens. Our immune system protects us by attacking these antigens
when they are recognised as dangerous. The key in this exchange is for our immune system to
recognise which biological entities are ours, and which are alien, potentially dangerous elements.
In some cases, the immune system also makes the wrong decision. It can classify a harmless
substance as dangerous, causing an auto-immune response such as allergies. It can also fail to
respond to a harmful substance, for example in cases of cancer or vaccine failure (British Society
for immunology 2020).

Figure 2.1: Brightfield microscope images of dendritic cells (left) and T cells (right). Dendritic cells are
named after their branching, tree-like structure. T cells are generally round.

The actors of our immune systems are thus the key defenders of our bodies. The actors we are
interested in for the purpose of this research are T lymphocytes – “T cells" – and dendritic cells
– DCs (Figures 2.1 and 2.2). Dendritic cells are “sentinels" and initiate our immune system’s
responses by sensing and integrating information from their environment and sending it over to
T cells. T cells are “master controllers" and trigger the appropriate immune response, if any, from
the information they have received, notably from dendritic cells, often in the form of chemical
signals or intercellular interactions (Brewster 2015; Roghanian 2020).

Antigens can be fought by antibodies, which are defensive proteins produced by our immune
system. More specifically, antibodies are produced by B cells in a process which starts in T cells,
and in some cases is activated by T cells seeing antigens on the surface of dendritic cells (Benson
et al. 2015). B cells need the support of T cells to make highly effective antibodies. Hence, the

3

Figure 2.2: Schematic model of a dendritic cell (left) and a T cell (right), highlighting the tree-like
structure of dendritic cells and the roundness of the shape of T cells. Adapted from Cavanagh and Findlay
(2020)

interaction between dendritic cells and T cells is critical in the decision for our immune system
to produce agents to defend our body.

The purpose of this dissertation is to evaluate how much interaction is observed between immune
cells. There is existing work in the field of immunology looking into the effects of these changes
in interaction. Benson et al. (2015) show how the generation of antibodies might be impacted by
T cell and dendritic cell interaction. They studied how dendritic cells and T cells interacted in
the mouse immune system, both in terms of whether or not interaction was witnessed, and of
duration of interaction. This interaction was studied under different conditions, with different
drug compounds being used to attempt to drive interaction or to inhibit it. They found that
under conditions where compounds were blocking interaction between T cells and DCs, fewer
antibodies were generated, meaning that the mice were not defending themselves as much.
Hence, the study of the impact of compounds on the interactions between immune cells can tell
us how our immune system will then operate.

2.1.2 Implications

Concepts and research described in this section show that changes in interactions between
immune cells control the way in which our immune system protects itself. Understanding how
interactions react under the control of different drugs can give us targets for new therapies.
Hence, analysing the interaction between immune cells under different experimental conditions
bears a particular interest in the field of immunology for studying immune responses. We want
to analyse this interaction with the help of deep learning techniques.

2.2 Concepts of interest in deep learning

The following sections collate selected research that show how deep learning techniques could
be applied in the context of our study.

2.2.1 Convolutional operations for image feature extraction

Convolutional operations in neural networks were first introduced for pattern recognition
by Fukushima (1980). They were later popularised by LeCun et al. (1989) as a method for
object recognition, once back-propagation was put to use as a learning procedure for networks.
LeCun applied his convolutional neural network (CNN) to digit recognition and subsequent
classification and explored these networks in multiple papers. Since then, convolutional operations
in neural networks have proven successful to extract features from more complex images. The

4

AlexNet model published by Krizhevsky et al. (2012) popularised the use of CNNs employing
the acceleration of GPUs in computer vision. Rawat and Wang (2017) provide a comprehensive
review of deep convolutional neural networks applied to the general task of image classification.
In a recent medical example, Shen et al. (2019) trained a convolutional neural network structure to
detect breast cancer from mammography screenings which showed competitive results compared
to commercial systems.

2.2.2 Autoencoders for dimensionality reduction

An autoencoder is a type of neural network trained to map its input to itself via a compressed
representation of the input, as shown in Figure 2.3. The compressed representation of the input
obtained from the bottleneck layer is a coded representation of the input, while the final output
of the network is the decoded version of the input. Autoencoders are not trained to learn a
perfect copy of the input data, but a smaller, compressed copy with features which the neural
network learns to be most important to be able to gain an overall understanding of the input.
Autoencoders were first introduced in the 1980s (Rumelhart et al. 1986) and are traditionally
used for dimensionality reduction and feature extraction (Goodfellow et al. 2016).

Encoder Decoder

Autoencoder

B
ottleneck

Code

In
pu

t

O
ut

pu
t

Input ≈ Output

Figure 2.3: Schematic representation of an autoencoder. An autoencoder consists of two blocks of layers:
encoding layers and decoding layers. The bottleneck layer holds a smaller representation of the input created
by the encoder layer, from which we try to recreate the input in the decoder layers.

Zamparo and Zhang (2015) show that autoencoders can be successfully applied for dimensionality
reduction in the context of biomedical data. Their autoencoder approach, applied to the unsu-
pervised clustering of cell phenotypes, outperformed other dimensionality reduction techniques
such as Principal Component Analysis. However, this approach was not applied to imaging data.
Nonetheless, autoencoders have been successfully used for reducing the dimensionality of large
imaging data by using convolution operations in their structure (Wang et al. 2016; Saenz et al.
2018).

2.2.3 Deep regression models

Neural networks can be constructed for regression tasks such that the model is trained to map
from an input data, e.g. images, to real-values from a continuous range. Lathuilière et al. (2018)
provide a review and comparison of common regression network architectures. In a medical
example, both Xie et al. (2015) and Xue and Ray (2017) show promising results for using CNNs
to extract numerical features from images of cell by using neural networks for the regression task
of counting the number of cells in an image.

5

2.3 Finding structure in high-dimensional data

The data we will be studying consists of images of cells obtained through high content screening
(HCS). HCS is a method for capturing images of cells in multi-well plates, using high-resolution
microscopy (Buchser et al. 2014). A plate captured with high content screening can yield a large
number of images in very high-resolution, typically around 2000 × 2000 pixels. This makes the
analysis of the physical characteristics of a cell possible at a granular level. However, this also
makes the dataset high-dimensional, which requires the use of visualisation techniques that map
high-dimensional data points to a low-dimensional plane if we are looking to gauge the structure
of the data. In this section we highlight two commonly used techniques for high-dimensional
data visualisation.

t-distributed stochastic neighbor embedding (t-SNE) was developed in 2008 by van der
Maaten and Hinton as a technique to map high-dimensional data to two- or three-dimensional
space. t-SNE can find structure in high-dimensional data by using the local relationships between
data points and optimising results using gradient descent. These local relationships are defined
using a Gaussian probability distribution in high dimensional space, and then recreated using the
Student t-distribution. Wattenberg et al. (2016) provide a comprehensive guide on understanding
the inner workings of t-SNE.

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) is
a dimensionality reduction technique first published in 2018 by McInnes and Healy. It has shown
competitive results compared to t-SNE. UMAP works by constructing a high-dimensional
weighted graph representation of the data. Each edge between points in the graph is weighted
according to how likely the points are to be connected. UMAP transforms the high-dimensional
graph representation into a low-dimensional representation that is as similar as possible, optimising
results in the same way that t-SNE does. Coenen and Pearce (2019) provide a similar guide as
for t-SNE above for grasping the inner workings of UMAP.

Figure 2.4: Three-dimensional model of a mammoth (left) projected to a two-dimensional plane with
t-SNE (middle) and UMAP (right). t-SNE was applied with perplexity = 2000. UMAP was applied
with n_neiдhbors = 200 andmin_dist = 0.25. Source: Coenen and Pearce (2019)

The main differences between t-SNE and UMAP are of speed and parameters. The original
UMAP paper compares UMAP’s performance with t-SNE’s on the MNIST digit dataset which
consists of 70,000 28 × 28 images of digits (0-9). On the researcher’s 2017 MacBook Pro with
i7 core and 8 GB of RAM, UMAP takes 87 seconds to run, while t-SNE takes 1,450 seconds
(McInnes and Healy 2018).

t-SNE’s main parameter to be tweaked is ‘perplexity’, which loosely corresponds to an estimate of
the number of neighbours each data point has (Wattenberg et al. 2016). UMAP’s main parameters

6

are number of neighbours and minimum distance. The former corresponds to the number of
approximate neighbours a data point has, similar to t-SNE’s perplexity. The latter corresponds to
the minimum distance between points in low-dimensional space, meaning that it will tell UMAP
how tightly to cluster points together, making visualisation more flexible.

The capabilities of t-SNE and UMAP are best illustrated through examples as shown in Figures
2.4 for a 3D to 2D projection and 2.5 for a projection from higher high-dimensional points. It is
important to note that in both techniques, distances between points in lower dimensions do not
necessarily reflect their distances in higher dimensions (Coenen and Pearce 2019).

(a) t-SNE projection (b) UMAP projection

Figure 2.5: 70,000 points of the MNIST digit dataset images projected to a two-dimensional plane with
t-SNE (left) and UMAP (right). t-SNE was applied with its default parameters and perplexity = 30.
UMAP was applied with n_neiдhbors = 50 andmin_dist = 0.65 to have clusters of similar sizes as
t-SNE. Each point corresponds to the image of a handwritten digit. We can see that same-digits are
generally clustered together with both techniques.

In the case of our research, applying t-SNE or UMAP to a dataset of microscope image could
allow us to uncover whether or not immune cells behave in recognisable ways under different
experimental conditions and whether or not this can be recognised from the structure of the
images.

2.4 The place of deep learning in immunology

A quantity of existing research already uses broader machine learning (ML) techniques in the
field of immunology. Muh et al. (2009) applied Support Vector Machines (SVMs) to the study
of allerginicity. Allergic reactions are triggered when the immune system wrongly assumes a
harmless substance to be dangerous, such as dust, and produces antibodies to attack it (Tregoning
2020). The SVMs were used to analyse the DNA sequences of known allergens and known
non-allergens. The aim was to try and make accurate predictions on previously unseen sequences
and classify them as either allergenic or non-allergenic. The model achieved 95.3% accuracy. In
another classification example, David et al. (2010) used a Bayesian classifier and a decision tree to
predict the likelihood of degenerative disorders from the sequencing of antibodies and achieved
a best accuracy score of 89%.

The above examples represent examples of immunology research carried out using traditional ML

7

techniques. Emerging deep learning research on cell imaging data now additionally includes cell
segmentation (Al-Kofahi et al. 2018). In cancer research, deep neural networks are increasingly
being used for feature extraction from images to accurately detect cancer (Litjens et al. 2016;
Bychkov et al. 2018). Research specifically using immune cell data is mostly focused on cell
counting (Turkki et al. 2016; Aprupe et al. 2019).

2.5 Summary

The research presented and cited here highlights that there is an increasing array of methods avail-
able to process high-dimensional, visual data through deep learning and visualisation techniques.
This section has shown that immunology researchers have successfully made use of machine
learning techniques, and that immunology-related fields such as cancer research have successfully
applied deep learning methods in their research to obtain promising results. There is indeed
an increasing interest in the applications of deep learning in medical fields, but the use of deep
neural networks has not been fully explored in the context of studying immune cells interactions.
There seems to be a lack of research into the qualitative and quantitative analysis of immune cell
interactions from imaging data through deep learning. However and as shown above, immune
cell interactions are of particular interest in drug research as they are key in understanding how
an immune system operates.

This dissertation will focus on filling this gap, applying deep learning to extract features from
images of immune cells in order to generate qualitative or quantitative data about the interactions
between T cells and dendritic cells under different experimental conditions.

8

3 Materials and Methods

This chapter covers the images that were available for analysis, how they were processed, and
which methods were applied to analyse them. Detailed results of the implementation of these
methods are then presented and discussed in Section 4.

3.1 Immune cells dataset

3.1.1 Setup

The images that were used for the purpose of this research were provided by the Laboratory of
Immune Cell Visualisation and Examination (LIVE) at the Institute of Infection, Immunity &
Inflammation at the University of Glasgow. The images are captured from 384-well plates with
a commercial INCell Analyzer 2000. As established in Section 2.1.1, the type of immune cells we
are studying are T cells and dendritic cells (DCs). Each plate to be imaged in the INCell Analyzer
contains a grid of wells as shown in Figure 3.1. Each of those wells is assigned a label and an
experimental condition. T cells, dendritic cells, and compounds related to the experimental
conditions are injected in the well. In order to be able to distinguish between them, cells are
loaded with fluorescent dyes: the T cells are dyed with a green dye (CSFE dye), and the dendritic
cells are dyed with a red dye (CMTPX dye). After imaging, we obtain three field-of-view images
per well:

• a Brightfield image, which shows both T cells and dendritic cells (Figure 3.2a)
• an image showing only the T cells, which has been captured through the fluorescent green
dye (Figure 3.2b)

• an image showing only the dendritic cells, which has been captured through the fluorescent
red dye (Figure 3.2c).

Figure 3.1: Example of a 384-well plate. Each well is labelled by a letter (vertically) and a number
(horizontally). Source: Brooks Life Sciences.

9

(a) Brightfield view (b) Green dye (T cells) view (c) Red dye (DCs) view

Figure 3.2: Microscope images extracted from the dataset showing each view obtained with the capture
system. Brightness has been adjusted for (b), (c) for details to come through.

3.1.2 Experimental conditions

Approximately 8,000 dendritic cells and 8,000 T cells were cultured in each of the 384 wells. The
INCell Analyzer 2000 captured an image of 25% of each well. The dendritic cells were cultured
from bone marrow cells obtained from mice. T cells were obtained from mouse lymphoid tissues.
About 70 to 90% of mouse T cells expressed a receptor for the Ovalbumin (OVA) peptide antigen,
which means they recognised it well.

Each well in a plate was associated with an experimental condition:

• The well are injected with one of 45 drug compounds,
• These compounds could be injected at a bigger or lesser concentration,
• Moreover, one of two types of antigens could be supplemented to further stimulate the
cells.

We were interested in using the latter as a label for our images, as it gives us a smaller number of
categories to look at. More specifically, there are three categories of stimulation:

• No stimulation
• Stimulation with Ovalbumin (OVA) peptide, which is the antigen that should be recognised
by most T cells in the well

• Stimulation with Concanavalin A (ConA), an antigen which cross-links T cells receptors
with a molecule on the surface of DCs that would hold the OVA peptide antigen and
present it to T cells

3.1.3 Image selection

There was a large amount of images available from different well plates with the different
experimental conditions described above. However, each set of images corresponding to a plate
represents about 8 GB of data on average. Moving images through disks or cloud filing system
thus represented substantial time and was vulnerable to transfer errors. Hence, a limited number of
plates were selected for training and evaluation to make sure their consistency could be validated.
Chosen plates were selected to best represent the experimental conditions were chosen for study,
and were assigned to three datasets.

• The ‘full’ dataset: this dataset contained an equal number of images in the three categories
of stimulation: no stimulation, stimulation with OVA, and simulation with ConA. This
was to prevent issues of class imbalance when training the model.

10

• The simpler ‘dual’ dataset, with two categories: this dataset contained an equal number
of images in two categories: no stimulation, and stimulation with OVA peptide. This
was selected under the hypothesis that if useful results cannot be obtained with a dataset
containing images from all categories, a deep learning model might be able to perform
better with two categories.

• The ‘DMSO-only’ dataset: Dimethyl sulfoxide (DMSO) is a solvent that helps solubilise
the investigated drug compounds, as most compounds are not initially water soluble. When
in solution, drug compounds should be more bioavailable and have more of a biological
impact. DMSO images in the original dataset only included DMSO and no drugs, and
were used as a control. However, images of this dataset should show the most difference
between stimulation categories as immune cells have not been impacted by drugs.

These datasets and characteristics are summarised in Table 3.1.

Table 3.1: Number of images in each category of stimulation for each of the three datasets. Both full and
dual datasets should have no issues with category imbalance.

Dataset Unstimulated OVA ConA
Full 9,800 9,800 9,800
Dual 6,900 6,900 0
DMSO 4,000 2,000 2,000

3.1.4 Pre-processing

The datasets obtained from this setup consisted of 2048 × 2048 16-bit images in TIFF format,
captured by a 12-bit camera. As mentioned above, each “image” consists of a set of three views: the
green fluorescent image (T cells), the red fluorescent image (dendritic cells), and the brightfield
image. The brightfield images show both cell types and can be used for diagnostic purposes when
deciding on pre-processing methods, but were otherwise discarded and not used for further
analysis.

Each of the images was about 8 MB in size, representing 4,194,304 pixels. This raised the issue
of very high dimensions to handle for a model. Moreover, each plate had 384 wells, which
corresponds to a total of about 800 images when counting both the T cells image and the DCs
image. This meant that we had quite a limited amount of images to feed into any kind of model.

Furthermore, as shown on Figures 3.2b and 3.2c, the smaller white dots of immune cells could
easily be confused for dust on the screen, even to the naked eye. This could be as confusing for a
deep learning model trying to learn features from an image as it could be for us. Furthermore,
the issue of images being of very high dimensions remained. Indeed, a basic autoencoder with
three 2×2 downsampling operations would yield around 500,000 pixel points from a 2048×2048
input image, which is still a very high number for a visualisation technique like t-SNE or UMAP.

Sliding window

To resolve this issue, the first idea was to make the images more manageable by a neural network
by cropping a set square subsection of the image of smaller dimensions, for example a square of
250×250 pixels. However, this left the issue of having only limited input to train a neural network.
Instead, images were pre-processed by passing a sliding window over the image, creating patches
of images per file. This quickly expanded the size of the dataset, making it as large as 58,000
samples in some cases. Smaller images also made more sense to the naked eye, hence we assumed
that a trained neural network would perform better on this gridded dataset than on a full-image
dataset.

11

Normalisation

Each sub-image was normalised with min-max normalisation (Equation 3.1) to get a [0, 1]
range of pixel values. It is common to normalise imaging data to the floating-point [0, 1] range
over keeping an integer representation of an image, as integers are subject to saturation and
rounding error. We used min-max normalisation as not all images in our dataset had 0 as their
minimum value.

minmax(x) =
x −min(x)

max(x) −min(x)
(3.1)

Noise and outlier detection

From analysing the images, it was also found that some images contained many pixels in the
range of [0, 255] before normalisation. Moreover, such pixels usually seemed to correspond to
background noise as shown in Figure 3.3. The fact that these lie in the range of an 8-bit image
pixel range could be coincidental, or the result of the way the imaging system picked up non-
stained elements in the well. The immunology researcher providing the images confirmed that
this noise was present in some images read from specific plates. Wells in early experiments were
injected with additional cells as researchers thought this made the cells behave more naturally,
however this was later found to have no real impact. These cells were not stained by dyes, but
some of their details still came through the imaging system. Although this background was not
always visible to the naked eye, we did not want those pixel values to confuse a neural network
model. Hence, values below 255 in images were clipped to 255 before min-max normalisation
was applied.

(a) Histogram and image analysis for a sub-image with noisy cells in the background

(b) Histogram and image analysis for a sub-image with no noisy cells in the background

Figure 3.3: Histogram and image analysis for background noise detection

As described above, the provided images sometimes contained some background noise. Further-
more, some images contained larger amounts of noise coming from defects in the wells, such
as water droplets. This is illustrated in Figure 3.4. Their pixel value distribution followed the
[0, 255] range as described above, but these values also covered the whole sub-image and no
cells of interest were present in those patches. Removing them entirely from the dataset would
have made it more difficult to rationalise the analysis of whole images. Indeed, by pre-processing

12

full images with a sliding window, each full image is represented by a patch of a set number of
sub-images. This would have created inconsistencies in the amount of sub-images per image file.
Instead of removing them, it was decided to keep them in to evaluate if a neural network could
make sense of them as a category. Noisy sub-images were labelled as “Faulty".

(a) Brightfield view (b) Green dye (T cells) view (c) Red dye (DCs) view

Figure 3.4: Different views of an image which contains “Faulty" patches. The fault is likely coming from
a drop of water in the well. (b), (c) have been brightness-adjusted for visualisation.

Labelling

Each plate came with an Excel sheet giving information about plate layout. Each well was
assigned a letter and a name, and the Excel sheet contained information about the stimulation,
drug compound ID number, and compound concentration used for each well. The filename of
each image of immune cells was formatted by plate number, and letter and number associated to
the image’s experimental condition. We could link this information to the Excel sheets. However,
the sheets were not automatically parsable, because types of drugs or placements in the sheet
might vary from one plate to the next, hence labelling had to be hardcoded and handchecked by
plate.

3.1.5 Combining images to qualify interaction

To summarise the section above, we made sure that for each well representing an experimental
condition, we obtained two images of interest: an image of T cells, and its counterpart image
of dendritic cells. While these were obtained separately with the help of fluorescent dyes, they
were still captured from the same well in which they were placed together. Hence, for us to gain
any understanding of cell interaction from these images, we needed to combine them one way
or another.

We decided to combine each black-and-white T cell and DC image in one RGB image. Compu-
tationally speaking, an RGB image is represented by a multi-dimensional array of three arrays.
Each of these arrays corresponds to a colour channel: red, green, or blue. The dendritic cell
images were obtained through fluorescent red dye screening, so the red channel of the image
was set to this image. Similarly, the T cell images were obtained through fluorescent green dye
screening, so the green channel of the image was set to this image. The blue channel of the RGB
image was left blank. The resulting RGB image thus allowed us to visualise T cells in green, DCs
in red, with close overlap between those cells in orange hues. Figure 3.5 illustrates a sample of
combined sub-images after this operation was completed.

This combination allowed us to visualise areas of proximity in cells as well as areas of overlap. As
such, this visualisation provided us a means of qualifying interaction between the different types
of immune cells.

13

Figure 3.5: Random sample of five RGB images of immune cells, where the red channel contains the
dendritic cells and the green channel contains the T cells. We can observe areas of interaction where there
are hues of orange.

3.2 Image segmentation

Image segmentation refers to the process of separating out the parts of interest of an image into
different ‘segments’ or objects. In our context, applying image segmentation to our dataset had
two purposes. The first was to use image segmentation as a method to separate the background
from the cell objects for background correction. The second was to use it to obtain binary objects
of the cells in order to compute numerical data about cells in the images.

3.2.1 Background correction

Although we have defined a method to perform some background noise reduction in images in
Section 3.1.4, this method might not be able to catch all irregularities in the background. As
such, we wanted to be cautious and explore some alternatives.

All the images in the original, uncombined dataset were black and white, with the details
of interest (i.e. the cells) in bright white spots. However, as discussed in Section 3.1.4, the
images could contain noise coming from grey details in the image that the naked eye cannot
see immediately. Moreover, our noise removal methods might not be foolproof. There might
be some noise remaining that could influence how a model learns. The best way for a model to
learn about cells only is to only provide pixel values for cells, with a background sent to 0. Hence,
we needed a method that will separate out the cell pixels from the background. We achieved
this by obtaining a binary mask of the image, such that the white pixels of the binary image
corresponded to the cells, and the dark pixels corresponded to the background. We tested two
methods for doing this: k-means and thresholding, which will be described further in Section 4.

Once a binary mask was obtained through these methods, we removed the background of the
original image by multiplying it with the mask, a procedure known as masking. If the binary
mask is satisfactory, the output of this image should only contain the cells, which will have kept
their detail, while the background will have been blacked out.

3.2.2 Quantifying interaction

The process used in subsection 3.1.5 describes a way of visually qualifying interaction between
immune cells from combined images. However, we are also interested in quantifying interaction
and obtaining a numeric value for the interaction between the T cells and the dendritic cells.

We can use the samemethod as described above to obtain the mask of the cell objects in each image
before combination. This pair of masks can be used for further calculations. A common metric
for evaluating image segmentation quality is intersection-over-union (IoU), also known as
the Jaccard index (Rahman and Wang 2016; Rezatofighi et al. 2019; Beers et al. 2019). This
metric is normally used to evaluate how successful the segmentation of an object in an image
is by comparing the segmented object to its ground truth value. It is computed from binary

14

objects as shown in Equation 3.2. The process of calculating overlap in our dataset is illustrated
in Figure 3.6.

IoU (X ,Y) =
X&Y
X |Y

(3.2)

In this case, we can use the IoU as a metric for area of overlap between two separate cell objects:
the T cell objects and the dendritic cell objects obtained from the same sub-image. We can use
the concept of overlap to quantify the level of interaction between cells. These overlap numbers
will be used as label input to a deep regression model. Each pair of images which will be combined
will be associated with an overlap value. The aim will be to evaluate whether we can train a
model to predict a numeric value of interaction from an image.

Figure 3.6: Example calculation of the numerical overlap between two sets of immune cells. The overlap
is visually represented in yellow. In this example we obtain a 7% overlap with intersection-over-union of
the two masks.

3.3 Deep learning models

The following two sections highlight what kind of deep learning models we used and their
specific purposes of in the context of our research. Their general structure is highlighted in
Figure 3.7.

3.3.1 Autoencoder for visualising high dimensional data

As described in Section 2.2, autoencoders are a particular type of neural network built with
symmetrical layers around a bottleneck. The aim of an autoencoder is to map an input to itself as
close as possible, while reducing its dimensions.

Different types of autoencoders exist. As our input consists of images, we set ourselves to
implement a convolutional autoencoder. The hope was that if an image is reduced to a certain
number of dimensions through convolutional neural networks, and another convolutional neural
network is able to reconstruct the original image very closely just based on that compressed
representation, then that smaller code representing an image is a good enough representation of
the original input that can be fed into other models or algorithms.

The first aim for our autoencoder was to reduce the dimensions of our image input, as the size of
the data points made it slow for data visualisation techniques to process. Furthermore, we hoped
that the most important and distinguishing features of an image would come through the neural
network layers and be collated in the bottleneck layer of the model.

High dimensionality visualisation techniques such as t-sne and UMAP can help visualise if there
is an inherent structure to the data. We wanted to use this as a tool for analysis of immune cells
interaction. We decided to use UMAP as our visualisation tool as both techniques yield similar
structures as shown in section 2.3, but UMAP has been shown to outperform t-SNE time-wise.

15

Encoder Decoder

Autoencoder

B
ottleneck

Prediction

Regression model

Figure 3.7: Schematic diagram of the models to be implemented. The encoder layers will transform the
input into a smaller coded representation, from which the decoder layers will create a reconstructed version
of the image. The encoder layers will then be connected to a regression model, from which we hope to make
predictions on how much interaction is perceived in an image. The bottleneck representation will also be fed
into the UMAP algorithm.

This also allowed us to experiment with UMAP’s different parameters more easily, and to observe
different structures of clusters in the data.

We wanted to be able to qualify interaction only from an image, without our model being
supervised with labels about the image’s associated experimental condition. This could be
evaluated from a UMAP projection and whether or not clusters were formed around the same
experimental conditions. If such successful groupings were found, it would allow us to show that
different experimental conditions yield structurally similar cell interactions.

3.3.2 Regression model for quantifying interaction in unseen images

We also developed a deep regression model. Our regression task was to predict overlap values on
unseen images. We used our autoencoder as a building block for a deep regression model. Again,
we hoped that the autoencoder would successfully extract the most important features from the
images through convolution operations and this would be a good starting block.

We used the encoder block of the model and extended it in a regression structure with fully
connected layers. This regression model took images and associated overlap values as input for
training. We could then assess whether or not the model successfully predicted interaction values
from an image of T cells and dendritic cells. We would also be able to evaluate whether this was
a faster approach than segmenting cells and calculating their overlap. Similar regression models
could also be trained with other interaction metrics easily.

16

4 Implementation

All development of the methods detailed in this section was done using Python.

4.1 System diagram

Figure 4.1 can help the reader gain a better understanding of how each of the materials and
methods used as described in Section 3 fit together.

Figure 4.1: System diagram showing the project workflow and how each image is decomposed and analysed.
The images are transformed into smaller patches, from which we can gain overlap labels. The images patches
are then combined and used for training. On one branch, these images will be fed into an autoencoder to
accomplish dimensionality reduction and evaluate the projection of this smaller data in a two-dimensional
plane. On the other branch, the images will be fed in a regression model with the overlap labels in order to
train a deep neural network for a regression task.

4.2 Pre-processing

Pre-processing steps are best explained through the diagram shown in Figure 4.2.

Images were processed with a sliding window of size 192 × 192 as we wanted a window that
was large enough to contain a few cells but also wanted to make it smaller to be able to reduce
individual image dimensions further. A sliding window of 192 × 192 yielded 100 patches as our
images were originally of size 2048× 2048. This meant the left and right border of the full image
were cropped out. We used NumPy’s compressed .npz file format for writing and reading the

17

Read filenames for the raw images
from disk

Load the raw images from the
filenames and pass a sliding

window of selected size over them

Load images and labels from NPZ file

Normalise each sub-image and
combine each T cells sub-image
with its counterpart DCs image

Calculate the mask for the T
cells sub-image and DCs

sub-image to get an overlap
value

P
re

-d
ev

el
op

m
en

t,
do

ne
 o

nc
e

Compress combined images, stimulation categories, overlap labels, and
filenames in a compressed NumPy file for storage and reading efficiency

P
re

-t
ra

in
in

g
st

ep
s

Use combined images to train the
autoencoder

Use combined images and
overlap labels to train the

regression model

Assign each sub-image its
filename

Assign each combined image a
stimulation category obtained
from the sub-images filename

Shuffle data

Figure 4.2: Diagram illustrating the different steps taken for pre-processing our images. We pre-process
the full images into sub-images, normalise them and combine them. We compute the overlap labels for each
combined image from the mask of the T cells image and the dendritic cells image. We store the combined
images and their labels in a compressed .npz file. When needed, the combined images are loaded and used
to train the autoencoder model. The regression model is also trained with the overlap labels. All data is
shuffled before training to avoid order bias. Stimulation categories are used post-training for evaluation.

images as they were computationally represented as multi-dimensional arrays of floating point
values and it made loading the arrays much faster. It also reduced storage space by a factor of 2.5
on average.

4.3 Image segmentation

As discussed in Section 2.4, performing cell segmentation from greyscale microscope images
of cells has been researched and is necessary when an image contains different types of cells
which have not been separately labelled in one way or another. In our case, cell segmentation did
not need to be applied as the images of T cells and dendritic cells have been captured separately
through fluorescent dyes. Instead, we were interested in using segmentation techniques to obtain
the mask of each type of immune cell for the purposes of background correction and estimating
interaction, as explained in Section 3.2.

As the immune cells in our images were bright blobs on a dark background, we hoped that
obtaining masks from each image would be straightforward. This section describes the methods
we explored for this task. Both k-means and thresholding methods yielded good results and their
specifics are detailed below.

Furthermore, we also explored the use of a deep learning model which was developed with the
purpose of segmenting biomedical data: the U-Net model.

18

4.3.1 k-means colour clustering

k-means has been shown to perform well on image segmentation by quantifying the number
of colours in an image into k clusters (Ng et al. 2006, for example). Formally, k-means aims to
partition data points in an array into k sets such that the variance between points within clusters is
minimised. In our case we wanted to use k-means to transform our greyscale images of immune
cells into bichrome images that we could use as masks. The following pseudocode details the
process of k-means.

Data: I , an array of pixel values making an image.
k , the number of colours to partition the image’s colour palette to.
Result: A set of k clusters.
begin

Initialise k objects picked from I

while clusters are still changing do
Assign each item i in I to the cluster with closest mean value
Recompute the mean (centroid) of each cluster

end
end

Algorithm 1: Pseudocode for the k-means algorithm applied to image segmentation.

k-means clustering is conveniently offered by multiple libraries in Python. We looked at both
scikit-learn’s and OpenCV’s k-means. scikit-learn is a general library for machine learning
tools, while OpenCV is a more specialised library built for computer vision purposes. Both their
k-means functions are straightforward to initialise and use. Their performance was benchmarked
in order to select the best one. The table below reports times for k-means with k=2, 10 iterations,
and each of the random and optimised methods of initialising centroids.

Table 4.1: CPU times for OpenCV’s and scikit-learn’s k-means tool ran on 1,000 samples of 192 × 192
pixels with different methods of initialising centroids. The computation was ran on a 2015 MacBook Pro
with 2.7 GHz i5 core and 8 GB memory.

Initialisation OpenCV scikit-learn
Random 18.9s 165s
k-means++ 29.3s 139s

As we can see OpenCV outperforms scikit-learn in all cases. OpenCV for Python is a wrapper
library around the original OpenCV code built in C++, which gives it a boost in performance.
OpenCV’s k-means was thus selected. Initially, k-means centers were initialised randomly in
development for the performance. However, during validation it was found that this method of
initialisation was yielding highly different results for the intersection-over-union metric at every
run, causing issues in model predictions. Hence, some speed was traded for consistency and the
k-means++ center initialisation method was selected instead.

4.3.2 Thresholding

An alternative to k-means in the case of black-and-white image segmentation is thresholding.
We decided to explore this option as it could have performance improvements compared to
k-means.

Thresholding refers to the process of converting a greyscale image to a binary image of pixels.
Pixels above a set threshold are set to 1, and the pixels below that threshold are set to 0. Thresh-
olding depends on pixel distribution analysis. Usually, thresholding works well for images which
have different peaks of pixel values in their distribution. We can then pick the value which seems

19

to separate out the two peaks as our threshold. However, in the case of our images we had one
visible peak of pixel values and could not identify a viable threshold from the histogram. Figure
4.3 illustrates this.

Figure 4.3: Example greyscale images and their histogram. As we can see the greyscale image of lillies
has two peaks of frequency, and we can see there is a separation between the peaks at a pixel value of
around 110. The greyscale image of cells has one peak, and there is a smaller frequency of pixel values
past that peak, but we cannot identify a specific pixel value as a threshold from the histogram.

As such, we had to find an alternative for finding a suitable threshold. First, we selected the mean
pixel value as the threshold. This yielded acceptable results, however some noisy pixels still came
through the mask (see Figure 4.4a). To fix that problem, the threshold value was set as the sum
of the mean pixel value and the standard deviation. This decision was based on the hypothesis
that the noise level of an image with a flat structure can be estimated from its variation. Results
were satisfactory, as shown in Figure 4.4b.

(a) Threshold: mean pixel value (b) Threshold: mean + standard deviation

Figure 4.4: Segmented images according to different threshold values. Using mean pixel value as a
threshold still lets in a lot of noise in the mask, while using the standard deviation with the mean yields a
much cleaner result.

Image segmentation through thresholding is also much faster than k-means, with 1,000 images
being processed in 1.11 seconds with the use of NumPy arrays. That is a 26x speedup on k-means’s
OpenCV performance. Nonetheless, masks yielded by k-means are more granular. Figure 4.5
shows the difference between the masks obtained through different methods.

20

Figure 4.5: Different versions of the same image showing, from left to right: the original image, the
k-means mask of the image, the thresholded mask of the image, and the difference between the k-means
and the threshold mask.

4.3.3 U-Net

The U-Net model is a convolutional neural network developed for the purpose of segmenting
biomedical data (Ronneberger et al. 2015). It is particularly useful for labelling biomedical data
when images contain multiple types of cells which have not been previously separated through the
use of markers such as fluorescent dyes. Moreover, U-Net models make use of data augmentation
to cope with small datasets of biomedical data.

In our case, we do not need to segment the T cells from DCs as they have already been separated
by the use of dyes. However, we wanted to compare the performance of simpler U-Net models
trained to predict the mask of a greyscale image to the more traditional segmentation methods
described in the sections above.

Figure 4.6: Schematic diagram of the U-Net model. The name of the model comes from its ‘U’ structure,
with an expansive path and a contracting path. Each blue rectangle represents a multi-channel feature map
obtained through the network’s operations. White rectangles are copied feature maps. The arrows show
different operations. Source: Ronneberger et al. (2015)

We trained a simple U-Net model1 on a sample of our full dataset. The input images were
the uncombined images of T cells and DCs, and the input labels were the masks of the input
images obtained with OpenCV’s k-means. Training was done on 16,000 samples and validation
was done on 4,000 samples of uncombined images. Training the model took 24 minutes for 20
epochs on a Google Colaboratory notebook. We then saved the model’s weights and timed the
generation of masks for 1,000 of the validation samples on the same machine on which we tested

1https://www.depends-on-the-definition.com/unet-keras-segmenting-images/

21

the k-means and thresholding methods. It took 3 minutes and 3 seconds on the machine with a
CPU. With Google’s GPU backend, this took 1.82 seconds.

To conclude on all these segmentation techniques, thresholding was the fastest, with k-means
coming second for CPU machines. We picked k-means with k-means++ initialisation for the
granularity and satisfactory performance across all machines.

4.4 Autoencoder and regression models

4.4.1 Experimental setup

As this is a research project based on using deep learning models, a large part of the research
involved an iterative process of repetitively tweaking the deep learning models, training them,
and evaluating them. Immunology experiments produce a lot of imaging data, and we wanted
our models to perform well on unseen data. Moreover, not all of our selected datasets contained
instances of all classes. We wanted our trained model to be able to deal with such datasets too. As
such, we selected the full dataset containing instances for all classes for training our model (see
Table 3.1). Part of it was set out for validation and testing. The other two selected datasets were
used purely for testing. Table 4.2 reports the number of samples in each dataset.

Table 4.2: Train-test-validation splits for selected datasets. Models are only to be trained on the full dataset.
The validation set represents 15% of the training set. The dual and DMSO-only dataset images were
only used for testing.

Dataset Train Validation Test
Full 16,490 2,910 10,000
Dual N/A N/A 13,900
DMSO N/A N/A 8,000

All deep learning development was done using Keras2 on a Tensorflow backend. Training was
carried out on Google Colaboratory notebooks3 to be able to accelerate computations with
Google’s GPUs.

We chose the adam optimizer for training (Kingma and Ba 2014). While training, we used
Keras’s callbacks feature to monitor the model’s validation loss and change training parameters
accordingly. The model would reduce its learning rate by a factor of 0.2 if no improvements in
the validation loss were seen over 3 epochs (i.e. the model entered a plateau), and we used early
stopping to stop training if no improvements were witnessed in validation loss over 5 epochs.
Training was usually ran with a batch size of 64 over 40 epochs.

4.4.2 Convolutional autoencoder

The main model to be developed was a convolutional autoencoder. The autoencoder was
built for two purposes: obtaining a smaller representation of each of the images to be fed into
high-dimensional visualisation algorithms, and to be the building block for a deep regression
model.

An autoencoder follows a symmetrical structure of reduction and expansion operations. The
reduction operations represent the encoding part of our model, and the expansion operations
represent the decoding part of our model. In order for the autoencoder input to be reduced and
then reconstructed to the same number of input dimensions, we need the two sets of operations

2https://keras.io
3https://colab.research.google.com/

22

to follow the same pattern and use the same number of parameters. Figure 4.7 illustrates the
symmetrical structure of an autoencoder, and shows the core layers of a convolutional autoencoder:
convolution layers combined with activation functions, and pooling/upsampling layers.

Figure 4.7: Diagram for a typical autoencoder structure. Operations are repeated the same amount of times
in the reductive path and the expansive path for the input to be reconstructed with the same dimensions at
the output. Convolution layers are used with an activation function, and followed by a pooling operation in
the reductive path, and preceded by an upsampling operation in the expansive path. The bottleneck layer
holds a smaller representation of an image.

Convolution refers to the process of taking the weighted sums of neighbouring values. Convolu-
tional layers can be thought as a window sliding over an image and summing everything within
that window. The specific behaviour of a convolution operation is determined by the filter it
uses. Each element in the window will be multiplied by the corresponding element of the filter.
We can specify both how big the filter should be, as well as how many different filters should
be used. If we use 64 filters, we will learn 64 features about the image, but it will also multiply
our dimensions by 64. Figure 4.8 illustrates the convolution process. The values of the filters are
parameters to be learned by the model.

Figure 4.8: Step-by-step illustration of a simple 3 × 3 convolution operation on a 4 × 4 image, resulting
in 4 convolution features. Source: Dumoulin and Visin (2016)

Activation functions define whether or not each element in the output of the convolutional layer (in
this case) should be set to ‘on’ or ‘off’. The purpose of an activation function is to only ‘activate’
elements of the hidden layers’ outputs if it seems to be contributing to the learning of the model.
Activation functions transform an input to an output according to their definition so they have
to be chosen accordingly.

Pooling layers will downsample an image by passing a window over an image and selecting a set
value from that window as the one to keep. There are two main types of pooling operations
commonly used: average pooling and maximum pooling. In average pooling, the mean value
of a window will be chosen as output. In maximum pooling, the maximum value of a window
will be chosen. Their counterpart are upsampling layers which will resize an image to the right
dimensions for a convolutional operation to be applied to it. An illustration of the how these layers
function is provided in Figure 4.9. Using a combination of upsampling and convolutional layers

23

is an alternative to using deconvolution layers which have the drawback of creating checkerboard
artifacts (Odena et al. 2016).

(a) Pooling (b) Upsampling

Figure 4.9: Left: maximum pooling of 2 × 2 with stride of 2 applied to a 4 × 4 image. The image is
reduced by a factor of 2. Right: upsampling of 2 × 2 with stride of 2 applied to a 2 × 2 image. The image
is augmented by a factor of 2. Adapted from Karpathy (2020).

Throughout the development of the autoencoder, the aim was to maximise the reduction of
dimensionality while maintaining a satisfactory reconstructed image. A trade-off had to be done
as quality decreases with the decrease of dimensionality. Size of the coded representation was
mainly impacted by the number of hidden layers and size of the convolution and pooling filters.
Quality of the reconstructed image could be improved with larger features being used in the
convolutional layers and smaller filters.

Implementation choices

Knowing this, the structure of the autoencoder was tuned by trial and error and literature review
of existing neural networks for similar applications.

In order to avoid losing too much detail in the reconstructed image, we only used 3 × 3 filters
in convolution layers and pooling was done by a factor of 2. Moreover, we kept the number of
features retrieved by convolution layers relatively high (64 -> 32) so as not to lose too much detail
in the images. Our structure also used decreasing filter size instead of increasing filter size. Even
though increasing filter size showed slight improvements in reconstruction, they were minimal,
and having bigger filters towards the bottleneck layer generated bigger coded dimensions.

We also decided to replace the pooling operation in the last layer before the bottleneck by a
strided convolution layer. Springenberg et al. (2014) show that adding striding to convolution
layers instead of using pooling operations can achieve the same levels of accuracy. Furthermore,
by adding the downsampling operation to the convolution layer, the network will learn how to
best perform this operation as convolutions are weighted layers. We did not add strides to all our
convolution layers in place of pooling layers as strides do come at the performance cost of having
more trainable parameters. Our experiments showed that the colours in the reconstructed image
seemed slightly more detailed when using striding over pooling, but this was very minimal and
the choice came down to wanting to experiment.

In the hidden layers, the choice of activation function was a variant of the Rectified Linear Unit
(ReLU), the Parametric Rectified Linear Unit (PReLU). ReLU simply returns 0 if the weight
unit in the output of a layer is less than 0, or the actual weight if it is bigger than 0. It has
become popular because it has been shown to outperform the conventional sigmoid function in
hidden layers (Nair and Hinton 2010; Glorot et al. 2011), as well as helping with faster training
convergence (Krizhevsky et al. 2012). PReLU differs from ReLU by having a small slope for
negative values which means it does not map all negative values to 0. This slope is made a training
parameter and is determined by the neural network during training. Figure 4.11 illustrates the
difference between the two. He et al. (2015) showed that PReLU can improve model fitting
for image classification applications. Reconstruction difference using PReLU over ReLU in our

24

Figure 4.10: Autoencoder reconstruction of validation images under different activation functions. The
original image is on the left, and we can observe the difference between reconstruction with PReLU (middle)
and ReLU (right).

model is shown in Figure 4.10. Our PReLU model also had a slightly lower validation loss of
0.0871 compared to ReLU’s 0.0875.

Figure 4.11: ReLU (left) vs. PReLU (right). The negative part of the PReLU function is variable and a
parameter to be learned. Source: He et al. (2015)

Figure 4.12: Function graph of the logistic sigmoid function. The logistic sigmoid function is characterised
by its ‘S’ shape. Any input will be bounded in [0, 1] at output.

The activation function at the output of the network was the logistic sigmoid activation function,
as we needed to restrict output to the [0, 1] range of our image pixels. Figure 4.12 illustrates this
activation function.

Our final autoencoder structure reduced dimensions by a factor of 2 a total of 5 times, resulting in
a tenfold reduction of dimensions on the original 110,592 pixels. The final coded dimensions were
of 1,152. Figure 4.13 illustrates how the autoencoder reconstructed an input image depending
on number of pooling operations. We traded off some reconstruction quality in order to obtain a
smaller coded dimension in the hope that it would help high-dimensional visualisation algorithms
perform better, as well as be a better starting block for a regression model.

25

Figure 4.13: Images reconstructed by the autoencoder according to the size of the coded layer. From left to
right: the original image to reconstruct, the image reconstructed from 3 convolution-pooling operations, the
image reconstructed from 4 convolution-pooling operations, the image reconstructed from 5 convolution-
pooling operations. Quality decreases with the number of pooling operations.

The autoencoder was trained with binary cross-entropy as a loss function, as we were aiming to
minimise the difference between two distributions: the input, and the reconstructed output. The
final structure of the autoencoder is shown below in Figure 4.14. Keras code for building the
model is available in Listing A.1.

Figure 4.14: Diagram of the final implemented autoencoder structure. Convolution blocks are represented
in pink, attached to activation functions in yellow or red. Downsampling operations are in green and
upsampling operations are in blue. The special strided convolution layer uses a green to yellow gradient to
represent the downsampling of the striding and the activation function set in the layer.

4.4.3 Deep regression

The regression model was built on the encoder part of the autoencoder. We wanted to use the
dimensionality reduction capacities of the encoder layers to evaluate whether interaction could
be quantified from an image’s features.

The structure of the regression model was kept simple. Research reviewing existing general-
purpose neural networks such as VGG-16 showed that adequate tuning of these models resulted in
a performance close to “state-of-the-art” without having to develop more complicated structures
(Lathuilière et al. 2018). We did not reuse such a general purpose model but the convolutional part
of the VGG-16 network is similar to the encoder part of our autoencoder, using 5 combinations
of convolutions and pooling operations. These operations are followed by a small number of fully-
connected layers (Simonyan and Zisserman 2015). Hence, we decided to follow this template
and not make our regression structure overly complex.

The encoder model was extracted from the autoencoder with the bottleneck layer flattened. This
encoder model was then extended with two fully connected layers separated by a dropout layer.

26

The fully connected layers were activated by ReLU. Dropout layers are used to randomly turn
some units of the output of hidden layers to 0. Dropout was shown to make models more robust
and prevent overfitting (Hinton et al. 2012). The final regression predictions were outputted
with a fully connected layer of size 1, activated by a linear function.

The choice of the linear function was justified by the following. The input to the regression
model was 192 × 192 × 3 images accompanied with labels in the range [0, 100] representing
a percentage of overlap between two groups of cells. As such, we want the output activation
function to be limited to [0, 100]. Both softplus and linear activations were candidates. The linear
activation had to be used with a non-negative kernel constraint, as overlap percentage cannot
be negative but the linear function normally allows for negative values. The softplus activation
function outputs values in the range [0, +∞]. Performance in terms of training loss was similar,
however the linear function performed overall better. Furthermore, softplus does not always map
an input to itself around 0 (shown in Figure 4.15) and is harder to differentiate compared to the
linear function, which would make training slower.

(a) Linear (b) softplus

Figure 4.15: Function graphs of the linear function (left) and the softplus function (right).

The regression model was trained with mean-squared-error loss, which calculates the difference
between the predictions of the model and the truth values of the labels. The final structure of the
deep regression model is shown in Figure 4.16. Keras code for building the model is available in
Listing A.2.

Figure 4.16: Diagram of the implemented regression structure. Note that the first part of the diagram
is the exact same as the contracting path of the autoencoder shown in 4.14, but the output of the strided
convolutional layer is flattened and passed onto fully connected layers. Fully connected layers are purple
rectangles, and the Dropout layer is shown by purple dots. Activation functions are represented in yellow or
red.

27

5 Evaluation

5.1 Methodology
This section will evaluate the performance of our autoencoder and regression models on unseen
images. As explained in Section 3.1.3, three sets of images were selected for research:

• A full dataset containing all categories, with no class imbalance issues
• A dual dataset, with no class imbalance issues, containing images from two classes only
• A ‘DMSO-only’ dataset, which should show the most distinction between classes, with
class imbalance issues. This dataset did not include any experimental conditions using
drugs, only stimulation conditions.

Each image in these datasets was categorised by stimulation level: one of Unstimulated, OVA, or
ConA. If the image contained image aberrations, it was labelled Faulty instead in the case of the
autoencoder. In the case of the regression model, the overlap value of Faulty images was set to 0.
Figure 5.1 illustrates what an image from each category looks like.

Figure 5.1: Example validation images taken from each stimulation category. Each image is also labelled
with its overlap value. From left to right: Unstimulated, 0.88% overlap; OVA, 5.4%; ConA, 22%;
Faulty, 0%.

We had two versions of each dataset: one which had been noise-corrected, and one which had
been background-corrected through the help of k-means colour segmentation. This dataset was
denominated the ‘masked’ dataset. We trained separate models on those two datasets to evaluate
the impact of the background on the model’s learning.

Training and validating was done on the full dataset’s 19,000 instances. We had 10,000 instances
of this dataset left for testing, and 13,800 instances of the dual dataset, as well as 8,000 instances
of the DMSO dataset. All datasets were consistently shuffled before training and testing with the
same random state parameter. We made sure there was no overlap between any of the datasets.
No image was used for both training and testing.

The following criteria were chosen in our evaluation:
• The success of the autoencoder model will be evaluated on its capacity at image recon-
struction, as well as if a UMAP projection of the coded images shows some underlying
structure of the data.

• The regression model will be evaluated on how well it predicts overlap values for unseen
images of immune cells.

28

5.2 Autoencoder

5.2.1 How well can we reconstruct an image?

Our autoencoder model is trained on binary cross-entropy loss. The model learns by trying
to minimise the difference between two distributions of pixels: the input, and the output. The
closer the loss is to 0, the more similar the two distributions are. This means that a score closer
to 0 is equivalent to the autoencoder reconstructing an image well. We can use this value as a
metric for comparing results between models and datasets. We can also assess the visual quality
of an image on reconstruction.

The following images in Figures 5.2, 5.3, 5.4 show how the autoencoder performed on image
reconstruction for each of the datasets. The output images were all reconstructed by the model
from a 1,152 inner representation of the input image of 110,592 pixels.

(a) Normal images (b) Masked images

Figure 5.2: Autoencoder-reconstructed images from the test images of full dataset. For each of the subfigures,
categories are Unstimulated, OVA, ConA from left to right. Input images are at the top, and reconstructed
images at the bottom.

(a) Normal images (b) Masked images

Figure 5.3: Autoencoder-reconstructed images from the dual dataset. For each of the subfigures, stimulation
categories are Unstimulated (left) and OVA (right). Input images are at the top, and reconstructed images
at the bottom.

The main feature we can note from these images is that visually, the autoencoder reconstructed
the images in quite a satisfactory way – we can still see where cells are and where they overlap.
We can recognise the images’s similarities. We can also identify some flaws. The main drawback
of the autoencoder model is the way it merges different cells together, creating ‘blobs’ rather
than more detailed cell objects.

29

(a) Normal images (b) Masked images

Figure 5.4: Autoencoder-reconstructed images from the DMSO dataset. For each of the subfigures,
categories are Unstimulated, OVA, ConA from left to right. Input images are at the top, and predicted
images at the bottom.

On the other hand, we can note that the masked autoencoder trained on the masked images of
immune cells achieve a higher level of detail, for all datasets. Particularly, the images reconstructed
by the masked model retain the circularity of the cell objects better, even in the unseen datasets.
This can be observed in Figures 5.3b and 5.4b where the dendritic cells in red hold their original
shape and detail better in comparison to their non-masked counterpart.

Visually, it is not immediately clear how much better the autoencoder performs on the full dataset,
part of which it has seen, compared to the unseen dual and DMSO datasets. Indeed, we will not
be able to fully compare the reconstruction of these images by eye. Further to visual evaluation
of the reconstruction of the immune cells, the two models’s prediction losses can provide another
perspective on their performance. Table 5.1 reports loss values for each model on each dataset.

Table 5.1: Binary cross-entropy loss value for the autoencoder models’s performances on each of the test
datasets. A value closer to 0 is better. We can observe a gain in performance across datasets in the masked
model.

Model Full Dual DMSO
Normal 0.0870 0.1159 0.0936
Masked 0.0156 0.0174 0.0166

From this data we can say that removing noisy backgrounds entirely from the images of immune
cells achieved substantial improvements. It also made the autoencoder’s performance on unseen
datasets more comparable to the full dataset.

5.2.2 Can we find an underlying structure in the images of immune
cells?

While we have shown that an autoencoder can complete the task of reducing the dimensionality
of an image of immune cells and reconstruct it fully from this reduced image, we want to look at
whether or not this would help with a two-dimensional projection of the datasets. The aim for
two-dimensional visualisation of the datasets was that it would allow us to uncover clusters of
images grouped around the same stimulation conditions.

Each element projected onto a 2D plane is labelled with one of the Unstimulated, OVA, ConA, or
Faulty categories at the plotting step.

30

Baseline performance

The expectations were that an autoencoder would allow us to extract the necessary features from
an image that would be sufficient for it to be reconstructed, but also for it to be analysed. As such,
we wanted to compare the visualisation performance of UMAP on the coded images to a baseline
performance on raw images that have not been reduced in dimensionality. This was only ran for
the full dataset as the large dimensions meant this computation took a considerable amount of
time. On a 2015 MacBook Pro with 2.7 GHz i5 core and 8 GB of RAM, running UMAP on the
10, 000 × 192 × 192 × 3 test instances of the full dataset worth took 1 hour, 5 minutes and 33
seconds. The result visualisation is shown in Figure 5.5.

Figure 5.5: Two-dimensional UMAP projection of the 10,000 testing images in the full dataset. UMAP
was ran with base parameters n_neiдhbors = 15,min_dist = 0.1. The legend highlights which colour
corresponds to which stimulation category.

This projection highlights that with the raw 192 × 193 × 3 images of immune cells, only Faulty
images seem to be recognised and there is no clear distinction between images of other categories.
A few OVA/green points are distanced from the main cluster. We will now look at whether
reducing the dimensionality of the images with an autoencoder helps make this distinction.

Trained performance

UMAP’s speed allowed us to try different parameters for our visualisations to attempt to yield
the best projections of the data, as running UMAP only took between 30 seconds and 1 minute
and 15 seconds to run on the encoder-processed images. That is an average 75x speedup on the
baseline performance.

We can see the projection of the full dataset’s test images in Figure 5.2. Two smaller clusters
have emerged which were not present in the baseline projection. The labelling shows us that
the sparser cluster contains two lines of red/Unstimulated and green/ConA points, which could
indicate that the autoencoder did help extract the most important features out of the images.
However, the larger cluster still bears no distinction between images of different categories.
Furthermore, the projection obtained with the masked model did not seem to perform better,
with less clusters being uncovered this way.

31

(a) Normal images (b) Masked images

Figure 5.6: Two-dimensional UMAP projections of the 10,000 test images from the full dataset. These
projection were obtained with UMAP parameters n_neighbors=30 and min_dist=0.8. The legend highlights
which colour corresponds to which stimulation category.

We hoped for the dual dataset to perform better as it only had two stimulation categories to
distinguish between. The normal and masked visualisations are shown in Figure 5.7. Although
no clear distinction of clusters is shown the normal projection, a small cluster formed in the
projection of the masked dataset. However, this cluster contains images of both Unstimulated and
OVA categories.

(a) Normal images (b) Masked images

Figure 5.7: Two-dimensional UMAP projection of the 13,800 test images from the dual dataset. These
projections were obtained with UMAP parameters n_neighbors=30 and min_dist=0.8. The legend highlights
which colour corresponds to which stimulation category. The normal images are not clearly distinguished
by category, but the masked images yield a separate cluster. None of these clusters bear distinction between
images of different stimulation.

The images from the DMSO images should show the most distinction between each other as
the immune cells from the images have only been influenced by the stimulation antigens and

32

no other compounds, while immune cells from the experiments represented in the other two
datasets have also been injected with drug compounds.

The DMSO projection is shown in Figure 5.8, from which we can observe some interesting
features. Firstly, there is one main cluster, but interestingly the coloured points show a green to
blue gradient, which we could attribute to a distinction between the OVA and ConA categories.
Blue/ConA points become sparser at the top of the cluster, and the same happens for green/OVA
points at the bottom of the cluster. This is overlaid on top of images of the Unstimulated category,
however this might show that some distinction is being made between the images. Furthermore,
we can see two smaller collections of red/Unstimulated points and green/OVA points. The
projection of masked images does not show this OVA-ConA distinction, but does have a separate
cluster of Unstimulated/OVA points.

(a) Normal images (b) Masked images

Figure 5.8: Two-dimensional UMAP projections of the 8,000 test images from the DMSO dataset,
which have been noise-corrected (left) and background-corrected (right). UMAP was ran with parameters
n_neiдhbors = 30 and min_dist = 0.8. The legend highlights which colour corresponds to which
stimulation category. In the normal images, the main cluster of points does not show a clear delimitation
between images of the same category, however there does seem to be some distinction as we can see a
gradient.

Every projection highlights that UMAP does not struggle to distinguish Faulty images from
images containing immune cells. This is useful as it acts as a control that tells us that UMAP is
noticing differences in images, and that the autoencoder does not corrupt the images and remove
important features. Nonetheless, UMAP did not yield clusters showing any kind of distinction
between categories in the cases of the full and dual datasets. A difference is more noticeable in
the DMSO dataset. This difference is no longer visible in the masked projection.

5.2.3 Are images within the same cluster structurally the same?

Some projections shown above still showed some clusters and outlier points. We wanted to assess
whether the images in these points were indeed structurally similar. In order to explore this, we
developed a tool that makes use of matplotlib’s animation API1. We can hover over the points of
the visualisation to display the original image that is represented by one of the projection points.
The drawback of the tool is that it struggles over large clusters of points as it requires quite a lot

1https://matplotlib.org/api/animation_api.html

33

of memory to update the coordinates in the graph, resize a 192 × 192 × 3 image, and display it,
and is slow in such cases.

Figure 5.9: Three images extracted from a live visualisation graph of the UMAP projection shown in
Figure 5.8. The graph on the left is unzoomed. The other two graphs have been zoomed in, showing the
tool’s functionality as well as a closer view of the cluster. We give two example images in the same cluster
of similar structure, but one that does not follow the trend.

Figure 5.9 highlight the tool’s functionality. We picked the projection of the DMSO dataset from
Figure 5.8 above that showed distinct clusters of images within the same category to evaluate
whether or not they were meaningful. The projection in the first image will look slightly different
as the plot is of smaller size and the method for drawing the scatter plots had to be adapted for
the task. We then zoom over clusters of interest to be able to pick out points more efficiently.
This view shows us that we can find two images within the same cluster that look structurally
the same, but another image which does not is also in that same structure.

Figure 5.10 shows a different case. We highlight three points in a cluster which are close to each
other and show they are similar – they all are a particular hue of green. This highlights that
our noise correction was not necessarily successful in all cases, and explains why less clusters are
found with the masked images.

Figure 5.10: Three images extracted from a live visualisation graph of the UMAP projection shown in
Figure 5.8. The graph has been zoomed in to the distinctive green cluster. This highlights three images that
are similar – they are all a shade of green.

34

5.2.4 Are our visualisations more meaningful with interaction mea-
sure meta-data?

In the case of visualisations that did yield some groupings, but contained points of mixed categories,
we hypothesised that other meta-data about the images might explain why some clusters were
formed. Indeed, maybe the stimulation level of immune cells was not creating enough distinction
between images, and they were more influenced by something else. For example, how much the
cells overlapped in the image, regardless of their stimulation category.

We plotted the visualisations again, but using the interaction measures collected with the
intersection-over-union metric to change the size of the markers. We decided to tweak the
visualisations shown in Figure 5.6a and Figure 5.7b as they yielded some separated groupings,
but of mixed labels. The results are shown in Figure 5.11 below.

(a) UMAP projection of the full dataset (b) UMAP projection of the masked dual dataset

Figure 5.11: UMAP projections for the full dataset and masked dual dataset, tweaked with the size of
overlap in each image as the size of the scatter points. The legend shows the category of each point as well
as the average size of the points.

These visualisations show us that although all images in the separated clusters contain a similar
level of interaction, some other images in the main clusters also have that level of interaction.
As such, we also cannot say that UMAP is finding structure in the images based on how much
overlap (i.e. shades of orange) there is.

5.3 Regression

Our regression task is to predict the percentage of overlap between T-cells and dendritic cells
from an image where T-cells are shaded green, and dendritic cells are shaded red.

5.3.1 Metrics

Our regression model is trained on mean squared error (MSE). We decided to evaluate on
root-mean-square-error (RMSE) as it is a common metric for evaluating the difference between
predictions of a model and actual truth values: RMSE has the advantage of being in the same
unit as the dependent variable. In our case the unit is the percentage of overlap between the
cells objects obtained with intersection-over-union. RMSE is defined as the square root of

35

the quadratic mean of the difference between our predicted values and their truth values. The
equation is as follows:

RMSE =

√

1
n
Σ
n

i=1

(

ŷi − yi)
2

(5.1)

where n is the number of samples in the dataset, y is the true value of a sample, and ŷ is the
predicted value of a sample.

We also include the (unbiased) standard deviation (SD) of our predicted results to express their
variability. The formula for SD is as follows:

σ =

√

1
n − 1

Σ
n

i=1(ŷi − µ)2 (5.2)

where n is the number of predicted samples, ŷi is the predicted value of a sample and µ is the
mean of all predicted values.

5.3.2 Can we quantify interaction from an image of immune cells?

We evaluate the predictions made by the normal and masked regression models by looking at
the predictions of each dataset in each stimulation category, however the model was not fed
any stimulation category labels during training. Nonetheless, we might see more overlap across
different stimulation categories if they generate more interaction between immune cells, so it is
important to also look at errors in prediction within those ranges of values.

Full dataset

Our regression model reports an overall score of 1.838 ± 4.583 on the test instances of the full
dataset. The masked regression model trained on the images which have a black background
reports a score of 1.161 ± 4.732, which shows an improvement in RMSE. Variance in the true
values is of 4.853 overall, meaning that we can see a very similar amount of variance in the
predicted values. Table 5.2 reports the full scores on all stimulation categories.

Table 5.2: Average RMSE and SD scores (in %) for the regression model’s predictions on the full dataset.
The closer the value is to 0, the closer the prediction is. We can see that the difference remains quite low
across all datasets, with ConA having the highest RMSE and SD.

Images Unstimulated OVA ConA All
Normal 1.344 ± 3.102 1.387 ± 2.963 2.502 ± 6.004 1.838 ± 4.583
Masked 0.832 ± 3.174 0.766 ± 3.355 1.642 ± 6.067 1.161 ± 4.732

We can see that the ConA category has a higher RMSE score, while Unstimulated and OVA scores
are similar. Given the large standard deviations on each of the scores, the differences between
them for each different stimulation category cannot be considered statistically significant. The
high standard deviation for images with ConA stimulation could be partly explained with the
range of values for that category.

Figure 5.12 is a scatter plot showing the line of best fit for our predictions. In the ideal scenario,
where the regression model always makes the right prediction, each point should be placed on
the diagonal line. We can see that that in the Unstimulated category, points struggle to follow this
line. There is a large number of errors when the value to predict is closer to 0. This is also the
case for the OVA and ConA categories, although less so. Furthermore, the plot shows that images
in the ConA category have a higher percentage of overlap in general. This could explain why the

36

(a) Normal images

(b) Masked images

Figure 5.12: Scatter plot comparing true values (x-axis) to predicted values (y-axis) for the full dataset.
The line of best fit is the straight continuous line running diagonally true the plot, which is the line we want
our predictions on. The predictions are plotted for, from left to right: Unstimulated (red), OVA (green), and
ConA (blue). Each sub-plot is not on the same scale as each category does not have the same range of
overlap values, but we wanted to show more granularity for each sub-plot.

ConA category yields a higher RMSE and SD score. In fact, if more points in the Unstimulated
and OVA categories have an overlap value of 0, then it would explain why they have a smaller
RMSE and SD score.

Figure 5.13: Histogram showing the distribution of overlap values for each stimulation category. The true
values are at the bottom, and the predicted values for the normal dataset are at the top. Most images have
an overlap value of around 0, and images in the ConA category show the biggest overlaps.

To illustrate this, we show the distribution of the true and predicted values of overlap between
immune cells in the images in a histogram in Figure 5.13. The true distribution of overlap values

37

highlights that there are a lot more of overlap values distributed around 0 for the Unstimulated
and OVA categories.

Nonetheless, the RMSE scores for our masked regression model are much more promising. This
is also reflected in the scatter plots. Figure 5.12b shows that in comparison to the normal model,
predicted values for the masked model follow the line of best fit much closer.

Dual dataset

Regression performance on the unseen dual dataset was similar as to above. Overall, it achieved
lower scores of RMSE with general scores of 1.677 ± 3.183 for the normal model and 0.932 ±

3.456 for the masked model. The SD of the true values is of 3.626 overall, hence we can say the
predictions represent the variability of the true values. The RMSE scores need to be put into
contrast with the fact that in the full dataset, the ConA category had higher RMSE scores due
to having a distribution with higher overlap values. Table 5.3 reports the full RMSE and SD
scores. Compared to Table 5.2 above, the regression model achieved a similar performance on
the unseen dataset for images in the Unstimulated category.

Table 5.3: Average RMSE and SD scores (in %) for the regression model’s predictions on the dual dataset.
The closer the value is to 0, the closer the prediction is. There is an improvement in RMSE score in the
masked model, and it accounts for more variance in the data.

Images Unstimulated OVA All
Normal 1.233 ± 1.981 2.026 ± 3.898 1.677 ± 3.183
Masked 0.673 ± 2.265 1.133 ± 4.310 0.932 ± 3.456

(a) Normal images

(b) Masked images

Figure 5.14: Scatter plot comparing true values (x-axis) to predicted values (y-axis) for the dual dataset.
The line of best fit is the straight continuous line running diagonally true the plot, which is the line we
want our predictions on. The normal regression models performs rather poorly around overlap values of 0,
in both categories.

Figure 5.14 shows how the predictions are positioned around the line of best fit for this dataset.
We can see that predictions are poor around 0: the model predicts values too high for true values

38

of 0, and predicts values too close to 0 for values much higher. For example, a true value of
close to 15% overlap was predicted as close to 0% overlap as shown in the Unstimulated graph.
Predictions also become poorer towards higher values, for both normal and masked images.

DMSO dataset

For the regression task, we are not comparing images of different categories, but trying to predict
an interaction value from an image. As such, we were hoping that the DMSO dataset would
have similar performance as the full dataset, as class imbalance issues should be less significant.

The regression model achieved an overall score of 1.837 ± 3.816 for the normal model, and
1.161 ± 4.732 for the masked model. SD of the true values is of 4.405 overall. Again, we see an
improvement in scores in the masked model. Full scores are reported in Table 5.4. As expected,
performance is similar across all categories compared to the full dataset, with the OVA category
showing the most difference.

Table 5.4: Average RMSE and SD scores (in %) for the regression model’s predictions on the DMSO
dataset. The closer the value is to 0, the closer the prediction is. We again observe an improvement in the
RMSE score in the masked model, and it accounts for variance in the data closer to the true SD value of
4.405.

Images Unstimulated OVA ConA All
Normal 1.013 ± 1.945 2.202 ± 4.308 2.567 ± 4.720 1.837 ± 3.816
Masked 0.700 ± 2.147 1.199 ± 4.809 1.773 ± 4.665 1.179 ± 4.011

(a) Normal images

(b) Masked images

Figure 5.15: Scatter plot comparing true values (x-axis) to predicted values (y-axis) for the DMSO
dataset. The line of best fit is the straight continuous line running diagonally true the plot, which is the line
we want our predictions on. For both the normal and masked models, there seems to be some large errors
around higher values of overlap. Each sub-plot is not on the same scale as each category does not have the
same range of overlap values, but we wanted to show more granularity for each sub-plot.

The scatter plot showing the line of best fit is available in Figure 5.15. Similarly to the dual

39

dataset, we can see that there is a higher variation around predictions of higher values in both
types of images. This might signify that our regression model is struggling with higher values of
overlap.

5.4 Discussion

In this section we have shown the results of the development of our autoencoder and regression
models. These results have shown that convolutional autoencoders can reconstruct images of
immune cells well with a highest binary cross-entropy loss of 0.1159 and a lowest score of 0.0156.
The autoencoder also sped up the process of high-dimensional data projection from an hour to
minutes, which is particularly significant for the field of immunology where imaging data is
predominantly high dimensional. Moreover, it was an efficient building block to extract features
from images to be passed onto fully connected layers for a regression task. Indeed, our deep
regression model has shown good results with the highest average RMSE score being 1.838 (%).
Particularly, we have noticed that the correct pre-processing of images, particularly the removal
of noisy backgrounds, greatly helps a model’s learning.

The results also have implications for the analysis of interaction between immune cells. From
what we observed here, we can say that deep learning methods are suited for the task of processing
images of immune cells. We were able to train a consistent regression model for the task of
predicting overlap value from an image of immune cells, where we assumed more overlap meant
more interaction between immune cells. This method can be faster on GPUs for obtaining
metrics from images rather than segmenting images and calculating overlaps directly.

We were not able to uncover an underlying structure to the data with the help of the autoencoder.
However, there could be multiple reasons for this as our evaluation had limitations. The difference
between DMSO-only results and the results on the other datasets tells us that the experimental
conditions behind each image did have an impact on their structure. This is significant as it
highlights that microscope images will have to be carefully selected and processed in order to
yield results suited for analysis. Datasets should be built around precise experimental conditions
to best exploit the capabilities of deep learning models. For example, a dataset could be built
from images of immune cells taken from the same stimulation category, but labelled by drug
compound used. It is also worth noting that the results here were obtained with image patches
of size 192 × 192. This gives quite a local view of the cells, and a bigger window size could give
a more global view and as such more information about how different cells behave together.
Therefore the size of the sub-images should also be taken in consideration, as it might yield
different results.

40

6 Conclusion

The purpose of our research was to apply deep learning methods to microscope images of immune
cells and evaluate whether a deep learning approach could be successfully applied to the analysis
of interaction between different types of immune cells.

To assess this, we implemented a convolutional autoencoder from which we implemented a
regression model. We wanted to use the autoencoder’s power at dimensionality reduction to
visualise the structure of the imaging data, as well as use it to build a powerful regression model
capable of predicting a value of interaction from an image of immune cells. The specific questions
we were looking to answer were whether or not there was an underlying structure to the images
of immune cells under different experimental conditions, and whether or not we could quantify
interaction from an image of immune cells.

Our evaluation of these two models showed that there is potential in using deep learning methods
for imaging data of immune cells, following in the footpath of similar research done in cancer
research. While we could not successfully find an inherent structure to the data using a UMAP
projection, this could have been influenced by the choice of datasets and size for creating patches
from the raw images. Moreover, we showed that a regression model could predict a value of
overlap from an image with a best RMSE score of 1.161 ± 4.732 on a background-corrected
dataset containing images from all our categories.

With appropriate pre-processing and further research, deep learning techniques could be a new
approach to the analysis of interaction between immune cells, allowing researchers to analyse
their datasets further.

6.1 Future work

There is a number of different routes that could still be explored. Firstly, we only explored one size
of sub-images in our pre-processing. A bigger size of sliding window could include more details
of the images and allow for a better global overview of the impact of experimental conditions
on immune cells. As such, bigger sub-images might reveal a structure that an algorithm such as
UMAP could analyse fast with the help of an autoencoder.

Furthermore, we only evaluated one metric for our regression task, which was the percentage of
overlap represented by the intersection-over-union metric. This represents some limitations in
simplicity of analysis. Indeed, a large clustering of T cells around a dendritic cell without overlap
could also signify a level of interaction, without overlap being observed. Moreover, we are using
a two-dimensional view of the cells. Two different types of cells overlapping might not mean
that they are interacting. A T cell could simply be sitting on top of a dendritic cell, without
communication happening between the two.

Finally, we have briefly touched upon the U-Net model. Our dataset gave us access to pre-
segmented pictures of immune cells. However, we could use this wealth of pre-segmented
data to train a U-Net model to segment T cells and dendritic cells object in greyscale images.
Alternatively, such a model could be used to extract features from segmented immune cells, such
as size of cells and granularity.

41

A Appendices

A.1 Autoencoder model initialisation

A.2 Regression model initialisation

def make_regression(encoder):
"""
Initialise a regression model for training using
a previously created encoder model
"""

model = Sequential()
model.add(encoder)
model.add(Dense(128, activation=’relu’))
model.add(Dropout(0.15))
model.add(Dense(64, activation=’relu’))
model.add(Dense(1, activation=’linear’,

kernel_constraint=constraints.NonNeg()))

model.compile(loss=’mean_squared_error’, optimizer=’adam’)

return model

Listing A.2: Keras code for initialising the regression model developed here. It is constructed from an
encoder model which has been previously initialised. The encoder is then extended with fully connected
(Dense) layers of decreasing sizes, separated by a Dropout layer for robustness. The final layer is activated
by a linear function constrained not to be negative, and outputs a numeric value.

42

def make_autoencoder():
"""
Initialise autoencoder model for training and return reference to both decoder

and encoder parts of the model.
"""

image shape is defined in the configuration
input_img = Input(shape=(imw, imh, c))

layers for reduction of image
x = Conv2D(64, (3, 3), padding=’same’)(input_img)
x = PReLU()(x)
x = MaxPooling2D((2, 2), padding=’same’)(x)
x = Conv2D(32, (3, 3), padding=’same’)(x)
x = PReLU()(x)
x = MaxPooling2D((2, 2), padding=’same’)(x)
x = Conv2D(32, (3, 3), padding=’same’)(x)
x = PReLU()(x)
x = MaxPooling2D((2, 2), padding=’same’)(x)
x = Conv2D(32, (3, 3), padding=’same’)(x)
x = PReLU()(x)
x = MaxPooling2D((2, 2), padding=’same’)(x)
x = Conv2D(32, (3, 3), padding=’same’, strides=2)(x)
x = PReLU()(x)

bottleneck layer
encoded = Flatten()(x)

layers for expansion of image
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), padding=’same’)(x)
x = PReLU()(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), padding=’same’)(x)
x = PReLU()(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), padding=’same’)(x)
x = PReLU()(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(64, (3, 3), padding="same")(x)
x = PReLU()(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(c, (3, 3), activation=’sigmoid’, padding=’same’)(x)

decoder = Model(input_img, decoded)
encoder = Model(input_img, encoded)
the encoder will be trained through the decoder so it does not need to be

compiled
decoder.compile(optimizer=’adam’, loss=’binary_crossentropy’)

return decoder, encoder

Listing A.1: Keras code for initialising the autoencoder model developed here. It contains 5 downsampling
and upsampling operations. It returns both its encoder and decoder parts. The decoder is used to evaluate
the performance of the autoencoder at image reconstruction. The encoder is used to encode images to project
them onto a two-dimensional plane using t-SNE and UMAP, and is also the building block for our
regression model. Started from a tutorial by Chollet (2016), and was expanded through experiments and
research.

43

6 Bibliography

Y. Al-Kofahi, A. Zaltsman, R. Graves, W. Marshall, and M. Rusu. A deep learning-based
algorithm for 2-D cell segmentation in microscopy images. BMC Bioinformatics, 19(1), Oct.
2018. doi: 10.1186/s12859-018-2375-z.

L. Aprupe, G. Litjens, T. J. Brinker, J. van der Laak, and N. Grabe. Robust and accurate
quantification of biomarkers of immune cells in lung cancer micro-environment using deep
convolutional neural networks. PeerJ, 7, Apr. 2019. doi: 10.7717/peerj.6335.

F. v. Beers, A. Lindström, E. Okafor, and M. A. Wiering. Deep Neural Networks with
Intersection over Union Loss for Binary Image Segmentation. In ICPRAM, 2019. doi:
10.5220/0007347504380445.

R. A. Benson, M. K. MacLeod, B. G. Hale, A. Patakas, P. Garside, and J. M. Brewer. Antigen
presentation kinetics control T cell/dendritic cell interactions and follicular helper T cell
generation in vivo, Aug. 2015.

J. Brewster. The immune system: looking for love in all the right places. https://www.
youtube.com/watch?v=hRvyCYyab68, 2015. Retrieved on 2020-03-17.

British Society for immunology. What is immunology?, 2020. URL https://www.
immunology.org/public-information/what-is-immunology. Retrieved on
2020-03-31.

W. Buchser, M. Collins, T. Garyantes, R. Guha, S. Haney, V. Lemmon, Z. Li, and O. J. Trask.
Assay Development Guidelines for Image-Based High Content Screening, High Content Analysis
and High Content Imaging. Eli Lilly & Company and the National Center for Advancing
Translational Sciences, Sept. 2014.

D. Bychkov, N. Linder, R. Turkki, S. Nordling, P. E. Kovanen, C. Verrill, M. Walliander,
M. Lundin, C. Haglund, and J. Lundin. Deep learning based tissue analysis predicts outcome
in colorectal cancer. Scientific Reports, 8, Feb. 2018. doi: 10.1038/s41598-018-21758-3.

M. Cavanagh and E. G. Findlay. T-cell activation, 2020. URL https://
www.immunology.org/public-information/bitesized-immunology/
systems-and-processes/t-cell-activation. Retrieved on 2020-03-31.

F. Chollet. Building Autoencoders in Keras. https://blog.keras.io/building-autoencoders-in-
keras.html, May 2016. Retrieved on 2020-03-30.

Coenen and Pearce. Understanding UMAP. https://pair-code.github.io/
understanding-umap/, 2019. Retrieved on 2020-03-28.

M. P. C. David, G. P. Concepcion, and E. A. Padlan. Using simple artificial intelligence
methods for predicting amyloidogenesis in antibodies. BMC bioinformatics, 11, Feb. 2010. doi:
10.1186/1471-2105-11-79.

V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. ArXiv e-prints,
March 2016.

44

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, Apr.
1980. doi: 10.1007/BF00344251.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In G. Gordon,
D. Dunson, and M. Dudík, editors, Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages
315–323. PMLR, 11–13 Apr 2011.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, chapter 14. MIT Press, 2016.
http://www.deeplearningbook.org.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV), ICCV ’15, page 1026–1034. IEEE Computer Society, 2015. doi:
10.1109/ICCV.2015.123.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. July 2012.

A. Karpathy. CS231n: Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io/convolutional-networks, 2020. Retrieved on 2020-03-28.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. URL http:
//arxiv.org/abs/1412.6980. Retrieved on 2020-03-30.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional
Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012.

S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud. A comprehensive analysis of deep
regression. CoRR, abs/1803.08450, 2018.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):
541–551, 1989.

G. Litjens, C. I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C. Hulsbergen
van de Kaa, P. Bult, B. van Ginneken, and J. van der Laak. Deep learning as a tool for increased
accuracy and efficiency of histopathological diagnosis. Scientific Reports, 6, May 2016. doi:
10.1038/srep26286.

L. McInnes and J. Healy. UMAP: Uniform Manifold Approximation and Projection for Dimen-
sion Reduction. ArXiv e-prints, Feb. 2018.

H. C. Muh, J. C. Tong, and M. T. Tammi. AllerHunter: a SVM-pairwise system for assessment
of allergenicity and allergic cross-reactivity in proteins. PloS One, 4(6), June 2009. doi:
10.1371/journal.pone.0005861.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on International Conference on Machine Learning,
ICML’10, page 807–814. Omnipress, 2010.

H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski. Medical image
segmentation using k-means clustering and improved watershed algorithm. In 2006 IEEE
Southwest Symposium on Image Analysis and Interpretation, pages 61–65, 2006.

45

A. Odena, V. Dumoulin, and C. Olah. Deconvolution and checkerboard artifacts.
Distill, 2016. doi: 10.23915/distill.00003. URL http://distill.pub/2016/
deconv-checkerboard.

M. A. Rahman and Y. Wang. Optimizing Intersection-Over-Union in Deep Neural Networks
for Image Segmentation. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, F. Porikli, S. Skaff,
A. Entezari, J. Min, D. Iwai, A. Sadagic, C. Scheidegger, and T. Isenberg, editors, Advances in
Visual Computing, Lecture Notes in Computer Science, pages 234–244. Springer International
Publishing, 2016. doi: 10.1007/978-3-319-50835-1_22.

W. Rawat and Z. Wang. Deep Convolutional Neural Networks for Image Classification: A
Comprehensive Review. Neural Computation, 29(9):2352–2449, June 2017. doi: 10.1162/neco_
a_00990. Publisher: MIT Press.

H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese. Generalized Intersection
Over Union: AMetric and a Loss for Bounding Box Regression. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 658–666. IEEE, June 2019. doi:
10.1109/CVPR.2019.00075.

A. Roghanian. Dendritic Cells. https://www.immunology.org/
public-information/bitesized-immunology/cells/dendritic-cells,
2020. Retrieved on 2020-03-17.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. CoRR, 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error
Propagation, page 318–362. MIT Press, Cambridge, MA, USA, 1986.

J. A. Saenz, N. Lubbers, and N. M. Urban. Dimensionality-reduction of climate data using deep
autoencoders, 2018.

L. Shen, L. Margolies, J. Rothstein, E. Fluder, R. McBride, and W. Sieh. Deep learning to
improve breast cancer detection on screening mammography. Scientific Reports, 9:1–12, 08
2019. doi: 10.1038/s41598-019-48995-4.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all
convolutional net. arXiv preprint, 2014.

J. Tregoning. Allergy, 2020. URL https://www.immunology.org/
public-information/bitesized-immunology/immune-dysfunction/
allergy. Retrieved on 2020-04-03.

R. Turkki, N. Linder, P. E. Kovanen, T. Pellinen, and J. Lundin. Antibody-supervised deep
learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained
breast cancer samples. Journal of Pathology Informatics, 7, Sept. 2016. doi: 10.4103/2153-3539.
189703.

L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605, 2008.

Y. Wang, H. Yao, and S. Zhao. Auto-encoder based dimensionality reduction. Neurocomput.,
184(C):232–242, Apr. 2016. doi: 10.1016/j.neucom.2015.08.104.

46

M. Wattenberg, F. Viégas, and I. Johnson. How to use t-sne effectively. Distill, 2016. doi:
10.23915/distill.00002. URL http://distill.pub/2016/misread-tsne.

W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell counting with fully convolutional
regression networks. In MICCAI 1st Workshop on Deep Learning in Medical Image Analysis,
2015.

Y. Xue and N. Ray. Cell detection with deep convolutional neural network and compressed
sensing. CoRR, abs/1708.03307, 2017.

L. Zamparo and Z. Zhang. Deep autoencoders for dimensionality reduction of high-content
screening data. CoRR, 2015.

	Introduction
	Motivation
	General problem and our idea

	Background
	Immunology concepts
	Our immune system
	Implications

	Concepts of interest in deep learning
	Convolutional operations for image feature extraction
	Autoencoders for dimensionality reduction
	Deep regression models

	Finding structure in high-dimensional data
	The place of deep learning in immunology
	Summary

	Materials and Methods
	Immune cells dataset
	Setup
	Experimental conditions
	Image selection
	Pre-processing
	Combining images to qualify interaction

	Image segmentation
	Background correction
	Quantifying interaction

	Deep learning models
	Autoencoder for visualising high dimensional data
	Regression model for quantifying interaction in unseen images

	Implementation
	System diagram
	Pre-processing
	Image segmentation
	k-means colour clustering
	Thresholding
	U-Net

	Autoencoder and regression models
	Experimental setup
	Convolutional autoencoder
	Deep regression

	Evaluation
	Methodology
	Autoencoder
	How well can we reconstruct an image?
	Can we find an underlying structure in the images of immune cells?
	Are images within the same cluster structurally the same?
	Are our visualisations more meaningful with interaction measure meta-data?

	Regression
	Metrics
	Can we quantify interaction from an image of immune cells?

	Discussion

	Conclusion
	Future work

	Appendices
	Appendices
	Autoencoder model initialisation
	Regression model initialisation

	Bibliography

